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ABSTRACT

I explore the possibility that the strongly coupled Higgs—fermion sector is
responsible for the existence of the fermion generations in a fashion similar to
that proposed by Veltman. This appears to be possible in theories in which the
vacuum expectation value of the Higgses giving mass to the fermions is small
and the corresponding Yukawa coupling strong. An example involving the Higgs

triplet is solved in a particular limit which displays an accidental chiral symmetry.
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The attempts to explain the existence of fermion generations fall, roughly
speaking, in two categories: those adhering to naturalness as their guiding prin-
ciplé and those attempting to achieve economy. The naturalness has led in turn
to supersymmetry, supergravity and superstrings, pushing the scale at which the
generations are created all the way to the Planck scale. The minimalist philoso-
phy, on the other hand, envisages a situation much like in nuclear physics, where
only two particles, endowed with a strong force, are responsible for hundreds of
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nuclei. An example of an economic model was suggested by Veltman
ago. According to Veltman’s proposal, the fermions of the first generation are
made up of one basic fermion family bound to a heavy Higgs particle, those of
the second generations containing two Higgses and so on. One difficulty with this
very attractive scheme is technical—we have no way of dealing with the strong
coupling, i.e. of computing the masses. On a more fundamental level, the Higgs
sector may be nonlinear™ and the Higgs particle need not exist (similar to the
o in QCD). In fact, for the Higgs masses of the order of several T'eV which are
needed for the model it may already be impossible to talk about a particle. The
principal argument against such a scheme has been that it is unnatural (in much
the same way that the natural models are uneconomical) in that there appears

to be no symmetry which would make the bound states of massive constituents
light.

In this Letter I consider a variant of Veltman’s model which has certain
amount of calculability and which possesses a limit which might be called natural.
It is based on isotriplet rather than the isosinglet Higgs field. In other words,
I propose that the fermions of the higher generations are bound states of those
of the first generation and the strongly coupled isotriplet Higgs field. Such a
situation may occur, for instance, in left right symmetric models”™ where the
fermions do not couple to those Higgs fields which are chiefly responsible for the
W and Z masses. Consider a model of this kind containing one fermion family

(e,ve,u,d) and the Higgs sector which we shall assume strongly interacting. The
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fermion masses arise from the Yukawa coupling of the fermions with the Higgs
field ® which is (2, 2) under SU(2); ® SU(2)r and after the symmetry breaking
becomes triplet under the global SU(2) (isospin). The (left and right) W and Z
bosons, on the other hand, obtain their masses both from the field & and from
other SU(2)L and SU(2)r Higgs fields Ay and Ag to which the fermions do not
couple. More precisely, the vector boson masses are proportional to gi (< & >?
+ < Apm) >2)]/ 2, Let us suppose now that the small fermion masses originate
from very small vacuum expectation value < © >, much smaller than < Ag >
and < Ap >. The Yukawa couplings with & must then be large in order to
account for the fermion masses. Apart from the weakly coupled gauge boson

sector, we thus have a strongly coupled fermion-boson sector.

Consider now the model of generations in which the second generation fer-

mions are bound states of the first generation ones and the triplet Higgs, sym-

bolically
c <I>(1’ <I’i*' 7
()~ (i) 6 »

We now have to address the question of dynamics. The main problem encoun-
tered when one attempts to build quarks and leptons from heavy constituents is
apparent lack of symmetry which would keep them light. I will show that, in a
certain 1/N approximation, this model has a chiral symmetry which keeps the
bound states much lighter than their heavy scalar constituent. The truncated
model which we are able to solve has one bound state (the ”second generation”)

whose mass is

T (2)

where m is the mass of the first generation quark, G the Yukawa coupling, i the
cubic scalar coupling and A the cutoff. The chiral limit corresponds to m — 0
and Gu — oo, that is light first generation and strong coupling.
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By the large-N limit we shall mean the limit of large global symmetry of the
model and not of its gauge group. Thus, neglecting the gauge bosons which are
weekly coupled and the Higgs fields which do not couple to the fermions, the
Lagrangian of the first generation fermions and the (isotriplet) Higgs field is

L =%db + Gpdy + V(). (3)

As mentioned above, we shall consider the situation where < ® > is very small

and the Yukawa coupling as well as the scalar self couplings p and A large.

It is convenient to consider the isospin breaking separately from the mass
splitting among the generations, which is our aim here. Therefore we shall assume

that the above Lagrangian has a global SU(2) symmetry under which
%> Uyp and & — UBUT (4)

It is this picture which we would like to formulate for arbitrary N. We therefore
introduce one fermion generation in N of SU(N) and one scalar field in the ad-
joint representation. The second generation created by binding the fermions with
the scalars is again an N-plet. This aspect of the model can thus be consistently
generalized to arbitrary N.

If we now scale the Yukawa coupling and the cubic scalar coupling as G:N =
const. and p?N = const. and the quartic coupling as AN = const., it is clear that
in the large N limit the planar graphs dominate. In the fermion-scalar channel
these are shown in Fig. 1. It is clear that the planar expansion cannot be
summed and that further simplifications are necessary in order to extract some
information about the spectrum. In case of QCD these consisted of going to two
dimensions' where a particular choice of gauge effectively eliminates the gluons

as dynamical degrees of freedom and one is left with the ladder diagrams which
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Fig. 1. A planar diagram contri- Fig. 2. The bubble diagram.
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buting to Higgs—fermion bound state.

can be summed. In our model we are able to solve the truncated version consisting
only of the ladder diagrams of Fig. 2. This is admittedly a crude approximation
and it is not clear to what extent the results are going to be representative of the
full theory. The graphs of Fig. 2 are now the leading diagrams of the effective

nonrenormalizable theory
L = P(id — m)p' — 8;5(8% — md)®i; — fF(¥*®ij@u¥" +h.c),  (5)

with the coupling constant f = Gu/m% which scales with N like fN = const.
A similar vector model has been studied by Higashijima, Suura and this author,

Ref. 5. We shall use here the same method in order to solve the theory (5).

We start by transforming the Lagrangian (5) to an equivalent one which is

Gaussian with respect to ¥, ¥r and &, by adding the following term to it:
—7{(‘1’71, ~ PP L%5) (TR + FRavk) + b c.}. (6)

We can always add such a term to the Lagrangian. The functional integration
over Y and ¥4, takes us back to the original Lagrangian, Eq. (5). The equivalent

Lagrangian is then
1__- > _— vy y
L = Lo(YL,¥r, ) - ?‘I’"I” + (WL @ph — ¥ 18T + b c.). (7)

‘I"L and \I"R represent composite operators ‘P.‘j‘lﬁi and ‘I>;j¢'}.{ and the spinor ¥*
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describes a composite Dirac fermion if its propagator has a pole. The ¢ propa-

gator is obtained from the free part of the effective Lagrangian defined by
eis,;;(‘l’,ﬁ) — /DQtJDKbiD'ETLDd’}{D%R eif[.d‘z' (8)

The path integral can now be performed leading to the following result for the
free part of Sesy:

So = —%/443'\17\1;‘ +iTr(

1 == 1 :
Wty - o). 9
Prmi TP m” ) (9)
The ¥ propagator is related to the Fourier transform of this expression and can

be written as

1 dik 1 1

iG-l(P) = —? +N @05 (p— k) — mé‘)’sk — m75

= pA - B. (10)

The integral can be evaluated by using the cutoff A yielding

N A?
A= ——In— (11)
3272 m%
and
1 Nm A2
B=>+——ln—. (12)
f 1622 mi
For the mass of the bound state we thus have
2.2
M = E =2m _.?Eﬂ'm_% (13)
A GuN In mI

Note that the second term gives a contribution to M which goes as m~!. The

above result can be understood in terms of an accidental chiral symmetry of the
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effective theory, Eq. (8)." Although the Lagrangian (5) does not have chiral

symmetry, the effective Lagrangian defined by Eq. (8) is chiral symmetric in the
2

limit m — 0 and % — 0.

In conclusion, the particular subset of the planar diagrams which we were
able to sum up seem to indicate that the strongly coupled Higgs—fermion sector
may possess an approximate chiral symmetry. If this result is physical and not
an artifact of the approximation made, it suggests the possibility that the Higgs
sector is rich and strongly interacting and ultimately responsible for the existence
of the fermion generations. Among the questions which have not been addressed
here, probably the most interesting is the one concerning other possible channels
where bound states may occur, in particular the fermion-antifermion channel
which might give rise to leptoquarks and other exotic particles. Another question
is how to incorporate the isospin breaking in the model. These and related

questions will be the subject of a future study.
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